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Abstract. We study the propagation of the light mesons σ, ω, ρ, and a0(980) in dense hadronic matter in
an extended derivative scalar coupling model. Within the scheme proposed it is possible to unambiguously
define effective density-dependent couplings at the Lagrangian level. We first apply the model to study
asymmetric nuclear matter with fixed isospin asymmetry, and then we pay particular attention to hyper-
matter in β-equilibrium. The equation of state and the potential contribution to the symmetry coefficient
arising from the mean-field approximation are investigated.
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1 Introduction

In recent years the medium dependence of the meson-
baryon couplings has been object of speculation [1–9]. This
subject has been advertised by the successes of the so-
called quantum-hadrodynamics theory (QHD) [10], in the
relativistic description of nuclear phenomena.

The assumption of variable couplings in the mean-field
approximation (MFA) is founded on different grounds. It
can be interpreted as the trace of the quark structure of
hadrons [7–9], or it can be viewed as a way to match ef-
fective Lagrangians and free-space nucleon-nucleon inter-
actions [1–6]. In any case assigning a variable behavior
to the couplings seems to be an appropriate method to
interpolate from one dynamical regime to another, using
effective hadron field models. A similar meaning has been
given to the in-medium meson masses, which have been
related to the transition to the chiral regime [11]. The
so-called Brown-Rho scaling law qualitatively describes
the behaviour of the hadronic masses in the proximity
of the transition point. According to the scaling law, all
hadronic masses decrease approximately at the same rate
as the system approaches to the chiral phase transition
(with exception of the pseudo-scalar meson masses).

On the other hand, in certain purely hadronic mod-
els [12,13] the non-polynomial meson-nucleon interaction
gives rise to effective, density-dependent coupling in the
MFA [14–16].

At this point it is worthwhile to mention that the use of
effective chiral models in hadron physics became manda-
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tory in the last years in regard of the attempts to relate
hadronic phenomenology with the fundamental theory of
strong interactions. This requirement is specially relevant
for the study of the few-nucleons problem or of hadronic
matter at very low baryonic density. In these cases the
detailed structure of the interaction is very significative.
This fact is in apparent contradiction with the successes
obtained by using models that do not exhibit an explicit
chiral symmetry, as for instance the Walecka model. In this
case even the use of pionic degrees of freedom is avoided.
However, in ref. [17] it was shown the essential coherence of
certain chiral models and the Walecka one, in the MFA, for
the medium- and high-density regime. Thus the Walecka
model can be regarded as the remaining interaction when
certain degrees of freedom are integrated out. In this sense,
there exists a large amount of work, see for example [18],
supporting the interpretation of the σ-meson interaction
as a correlated interchange of pions. Also, the inclusion
of non-linear σ-meson couplings within the frame of these
models seems to be necessary in order to describe appro-
priately the main properties of nuclear matter and finite
nuclei. An example of this feature is the Derivative Scalar
Coupling model (DSCM) [13], where a non-polynomial σ-
meson coupling with baryons is proposed. According to
the present discussion, a treatment of all the mesons on
the same foot of equality is desirable if one wants to gener-
alize the DSCM in order to interprete it as a high-density
limit of chiral models like, for example, the Nambu–Jona-
Lasinio model [19].

In this work we want to move in this direction, taking
the DSCM as our starting point. Furthermore a modi-
fied version of this model is proposed to explore the high-
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density behavior of nuclear matter with hyperons in con-
ditions that may exist in the interior of neutron stars. In
our model the charge symmetry is preserved and it pro-
vides effective couplings for all the mesonic channels con-
sidered. The medium dependence comes through the mean
value of the scalar σ-meson, evaluated at finite density and
temperature. More general interactions could include non-
linear vertices in terms of all the mesons considered, but
we restrict here to the simplest case. This choice is similar
to the approach of [3], where the functional dependence of
the couplings includes only the product Ψ̄γµΨ , but not the
scalar Ψ̄Ψ or more involved nucleon field combinations. As
stressed in this reference, the density variation of the cou-
plings must be written as a Lorentz invariant functional of
the fields, to obtain the correct Euler-Lagrange equations.
Otherwise the so-called “rearrangement” contribution is
absent and the thermodynamical consistency is lost.

We use the model proposed here to investigate asym-
metric nuclear matter at finite temperature, therefore we
explicitly include the isovector mesons ρ and a0(980).

The equation of state of asymmetric matter is an im-
portant input in astrophysical studies such as the cooling
rate of neutron stars or the supernova collapse mechanism.
It is well known that the proton concentration is determi-
nant in the cooling of neutron stars [20,21], and this con-
centration is mainly determined by the isospin-dependent
contribution to the equation of state.

As an interesting case of asymmetric matter we con-
sider hadronic matter in β-equilibrium. For this purpose
we generalize the DSCM model to include the octet of
baryons n,Λ,Σ, and Ξ.

We want to stress that our results are expected to be
valid at sufficiently high density, therefore we have selected
applications within the scope of astrophysical interest. Ex-
trapolations to heavy-ion collision scenarios could not be
necessarily valid.

We have evaluated the meson propagators in the rel-
ativistic random phase approximation (RRPA), includ-
ing particle-antiparticle contributions, and we have ex-
tracted from them the in-medium effective meson masses.
The scalar-meson masses cannot be unambiguously deter-
mined, instead we use a regularizing parameter to explore
their potential regimes of variation.

We organize this paper presenting the model in sect. 2,
in sect. 3 we discuss the bulk properties of symmet-
ric nuclear matter at zero temperature, meanwhile the
asymmetric nuclear matter equation of state is treated in
sect. 4. The properties of β-stable matter are considered
in sect. 5, and the Feynman graphs contributing to the
RRPA, the evaluation of the propagators and the behav-
ior of mesons in the hadronic environment are presented
in sect. 6. We conclude with the discussion and summary
in sect. 7.

2 The modified DSCM

In this section we present a relativistic model of hadronic
fields inspired on the DSCM proposed by Zimanyi and

Moszkowski [13]. The DSCM has been used to study nu-
clear many-body effects in several applications [22], to in-
vestigate neutron star properties [23], extended to include
nucleon resonances [24] and hyperons [25], related to an
effective quark description of hadronic properties [26], and
generalized with a tensor coupling [27] in order to improve
the spin-orbit splitting.

The DSCM has two important features which distin-
guish it from the QHD-I model of ref. [10]. In first place
it is non-renormalizable ab initio and there is no imme-
diate way to introduce vacuum corrections to the MFA
to the ground state, although the main properties of nu-
clear matter are successfully described. In second place a
residual interaction can be extracted beyond the lowest
order solution, whose strength decreases monotonically as
a function of the baryonic density [15,16]. This fact en-
sures the ground state predominance at high density as
assumed in QHD [10].

Since we are interested here in the description of asym-
metric matter, besides the fields Ψa for the nucleons, we
include the isoscalar scalar (σ) and isoscalar vector (ωµ)
mesonic fields, and those corresponding to the ρ isovector
vector (ρA

µ ) and the a0(980) isovector scalar (δA) mesons.
We use Greek, Latin lower case and Latin upper case in-
dexes to denote Lorentz, baryon isospin and meson isospin
components, respectively.

In its simplest version the DSCM [13] has a Yukawa
type N-ω coupling and a N-σ non-polynomic term. We
modify the vertices allowing for two different mesons (one
of them the scalar σ) to locally interact with a baryon:

LDSC = Ψ̄

[
i �∂ − M − gd τ · δ + gw �ω + grτ · �ρ/2

1 + gsσ/M

]
Ψ

+
1
2
(∂µσ∂µσ − m2

sσ
2) +

1
2
(∂µδ∂µδ − m2

dδ
2)

−1
4
FµνFµν +

1
2
m2

wω2− 1
4
RµνRµν +

1
2
m2

rρ
2, (1)

where Ψ(x) is the isospin multiplet nucleon field, M is the
averaged nucleon mass and gs, gd, gv, and gr are adimen-
sional coupling constants. As usual in QHD the ground
state for homogeneous infinite matter is approximated by
considering mesonic fields as classical quantities and as-
similating them to effective nucleon properties. Thus we
can separate the c-number contributions:

σ(x) = σ̄ + s(x), (2)

δA(x) = δ̄ δ3A + dA(x), (3)
ωµ(x) = ω̄ δµ0 + wµ(x), (4)

ρA
µ (x) = ρ̄ δµ0δ

3A + rA
µ (x), (5)

where σ̄, δ̄, ω̄, and ρ̄ are classical mean-field values and
s, dA, wµ, and rA

µ are quantum fluctuations which are not
included in the ground state. Expressions for the c-number
contribution to meson fields can be obtained by taking sta-
tistical averaged Euler-Lagrange equations, and requiring
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self-consistency. In this way we obtain

m2
sσ̄ = gs

〈Ψ̄(M − gdτ3δ̄ + gwγ0ω̄ + 1
2grτ3γ0ρ̄)Ψ〉

MN2
, (6)

m2
dδ̄ = gd

〈Ψ̄τ3Ψ〉
N

, (7)

m2
wω̄ = gw

〈Ψ †Ψ〉
N

, (8)

m2
r ρ̄ = gr

〈Ψ †(τ3/2)Ψ〉
N

, (9)

where we have used N = 1 + gsσ̄/M . The expectation
values must be evaluated with the ground-state solution
for the nucleon field, which depends on σ̄ and δ̄ through
the effective nucleon mass

M∗
i =

M − gdIiδ̄

N
, (10)

with Ii = 1,−1 for protons and neutrons, respectively.
The nucleon dispersion relation is also modified according
to (p0 − gwω̄ − grIiρ̄/2)2 − p2 = M∗ 2

i .
In eqs. (8) and (9) the terms between angular brackets

represent the conserved baryon density and the isospin
density, respectively.

A residual nucleon-meson interaction arises beyond the
lowest order approximation [15] by inserting eqs. (2)-(5)
in the interaction term:

M +
∑

i Γiφi

1 + gsσ/M
=

M +
∑

i Γi(φ̄i + δφi)
N(1 + gss/N)

.

In the expression above the symbol φi represents any
one of the mesonic fields δ, ω, and ρ, which by virtue of
eqs. (3)-(5) splits into the classical mean value φ̄i, and the
quantum fluctuation δφi. Γi stands for the bare meson-
nucleon vertices: Γi = −gdτ, gwγ, grτγ/2, corresponding
to the a0-, ω-, and ρ-meson, respectively. The right-hand
side of this equation is non-polynomic and cannot be used
to directly apply a diagrammatic expansion. Restricting
to the physical regime for which quantum fluctuations are
negligible compared to mean values, enables us to approx-
imate:

M +
∑

i Γiφi

1 + gsσ/M
� M∗ + γ0 δε + Lres, (11)

with

δε =
∑
ω,ρ

Γ ∗
i φ̄i, (12)

Lres = −g∗ss +
∑

i

Γ ∗
i

[
δφi − gs

NM
(φ̄i + δφi)s

]
. (13)

We have introduced the medium-dependent vertices
Γ ∗

i , which are obtained from the bare ones by replacing the
coupling constants gd, gw, and gr by effective couplings.
The last ones are given by the relation gd/g∗d = gw/g∗w =
gr/g∗r = N . Also we have used gs/g∗s = N2.

The expansion proposed in eq. (11) respects the orga-
nizational principle of nuclear effective field theories [28].

In this approximation, the residual interaction of
eq. (13) arises besides the nucleon effective mass (10)
and the contribution to the nucleon single-particle energy
(12). The interaction term Lres comprises a one-meson–
nucleon vertex, together with a two-meson exchange term.
In all cases the vertex functions are medium dependent,
g∗s

(
1 +

∑
i Γiφ̄i/M

)
, Γ ∗

d , Γ ∗
w, and Γ ∗

r for the one-meson
case and g∗sΓi/M for the two-meson instance.

This linearized version can be used to study the quan-
tum corrections beyond the mean-field approximation.

Variable couplings are an expected feature of hadronic
models, whenever the quark substructure becomes rel-
evant [7–9]. Furthermore, density-dependent couplings
have been proposed as a key assumption in order to match
relativistic nucleon potentials adjusted to scattering data,
with hadronic field models [1–6]. This approach was ini-
tiated as a way to avoid involved Brueckner-Hartree-Fock
calculations for finite systems, using one-boson exchange
potentials. Thus, the main purpose is to take advantage
of the relative simplicity of the Hartree approach of the
QHD models. The link between both schemes is estab-
lished by requiring the equality of the nucleon self-energy
in symmetric nuclear matter as evaluated in both formula-
tions, and allowing QHD coupling constants to be density
dependent.

In our treatment the effective couplings are unam-
biguously extracted from the Lagrangian, once the MFA
has been introduced. Thus in this scheme one has a well-
defined and invariant way to describe the medium influ-
ence on the couplings. Furthermore, the internal consis-
tency of the approach is guaranteed.

Up to this point, we have restricted the discussion only
to protons and neutrons, however the introduction of hy-
perons is straightforward. A sum over different baryonic
species must be considered in the Lagrangian density and
the vertices must be modified in order to take into ac-
count the isospin degeneracy of each one. Also, additional
couplings between the mesons and every hyperon isomul-
tiplet must be introduced. A more detailed discussion will
be given in sect. 5.

The energy density E for infinite homogeneous
hadronic matter, can be evaluated in the MFA by taking
the statistical average of the energy momentum tensor:
E = 〈T 00〉. The thermodynamical pressure P under the
same conditions is obtained by averaging the trace of the
spatial-spatial component of this tensor: P = 〈Tr T ij〉/3.
We include the corresponding equations for the sake of
completeness:

E =
∑

i=p,n

1
(2π)3

∫ ∞

0

d3kEk i [nF(Ek i) + nF(−Ek i)]

+
1
2
(m2

sσ̄
2 + m2

dδ̄
2 − m2

wω̄2 − m2
r ρ̄

2)

+g∗wω̄ n +
1
2
g∗r ρ̄ (np − nn), (14)
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P =
∑

i=p,n

1
3(2π)3

∫ ∞

0

d3k
k2

Ek i
[nF(Ek i) + nF(−Ek i)]

−1
2
(m2

sσ̄
2 + m2

dδ̄
2 − m2

wω̄2 − m2
rρ̄

2), (15)

with Ek i =
√

M∗2
i + k2, M∗

i is given by eq. (10), and

nF(zi) =
Θ(zi)

1 + eβ(xi−µi)
+

Θ(−zi)
1 + eβ(xi+µi)

,

is the nucleon statistical occupation number, xi = zi +
gwω̄ + Iigrρ̄/2 is the particle energy, µi is the chemical
potential, and β = 1/kBT . The chemical potential is re-
lated to the number density of the i-type particle through:

ni =
1

(2π)3

∫ ∞

0

d3k [nF(Ek i) − nF(−Ek i)] , (16)

and finally n = np+nn is the total particle number density.
To evaluate eqs. (14) and (15), one must fix the parti-

cle number densities np, nn and then simultaneously solve
eqs. (6)-(10), together with eq. (16).

Another interesting quantity is the nuclear symmetry
energy Es defined as

Es =
1
2

∂2E

∂χ2

∣∣∣∣
χ=0

,

where χ = (nn − np)/n. This energy contains a purely
kinetic term T , and a contribution Vs coming from the
isovector mesons only. The explicit expression for Es at
zero temperature, including the a0-meson contribution has
been already derived, see for example [29]:

Es = T + Vs, (17)

T =
1
12

∑
i=p,n

p2
Fi

EFi

, (18)

Vs = g∗2r

n0

8m2
r

− g∗2d

n0

∑
i

(
M∗

i

EFi

)2

4(m2
d + g∗2d A)

, (19)

where pFi
is the Fermi momentum for the i-type particle,

EFi
=

√
p2
Fi

+ M∗2
i , and

A =
∑

i=p,n

3
π2EFi

[
M∗2

i pFi
+

p3
Fi

3

−M∗2
i EFi

ln
(

pFi
+ EFi

M∗
i

)]
.

3 Bulk properties of symmetric nuclear
matter at T = 0

In the previous section we have presented the model,
which contains several free parameters. The masses of the
a0-, ω- and ρ-meson are taken at their physical values

Fig. 1. The relationship between the couplings gr and gd,
constrained to reproduce the symmetry energy Es = 32 MeV
at zero temperature and at the saturation density n0. The pair
of couplings A and B used in our calculations are marked with
circles.

Fig. 2. The effective couplings relative to their vacuum values
in symmetric nuclear matter at T = 0, in terms of the baryon
density. The solid line corresponds to the σ channel, and the
dashed line to the δ, ω, and ρ cases.

md = 984 MeV, mw = 783 MeV, and mr = 770 MeV, re-
spectively. We adopt the accepted value for the σ-meson
mass ms = 550 MeV. There remains to determine the
four coupling constants. We adjust them to reproduce
the main bulk properties of symmetric nuclear matter:
the saturation density n0 = 0.15 fm−3, the binding en-
ergy εB = −15 MeV, and the symmetry energy Es = 32
MeV at zero temperature and at normal density. Another
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Fig. 3. The binding energy (left) and the pressure (right) as functions of the baryon number density at T = 0, in the MFA.
Solid and dashed lines correspond to our results and the standard DSCM calculations, respectively.

Fig. 4. The effective nucleon mass at zero temperature in sym-
metric nuclear matter. The line convention is the same as in
fig. 3.

quantity of physical interest is the isothermal compress-
ibility κT , however the DSCM provides very good values
for κT without imposing any further condition. Therefore
we have three physical conditions to fix the four coupling
constants. Two of them, gs and gw are univocally deter-
mined as gs = 12.379, gw = 14.624, whereas gr and gd are
functionally dependent through eqs. (17)-(19) evaluated at
n = n0. For our calculations we have selected two sets of
couplings (gr, gd), denoted by A and B: set A = (11.583, 0)
and set B = (15, 6.538), which are shown in fig. 1.

As previously mentioned, a feature of the model pro-
posed is the presence of effective couplings. The behaviour

of these couplings relative to their vacuum values is the
same for the δ, ω, and ρ fields, and different for the scalar
σ, as discussed in sect. 2. As can be seen in fig. 2, the chan-
nel corresponding to the last case is much more suppressed
in dense matter. This figure corresponds to symmetric nu-
clear matter, but it must be noted that the behavior of
the effective couplings depends on the composition of the
hadronic medium, i.e. they must depend on the asymme-
try coefficient χ.

We compare these results with the density-dependent
hadron field theory (DDHFT) outcomes [3–6]. For this
purpose we use the interpolating algebraic function given
in [5]. Differences are appreciable at medium and high
densities. The couplings for σ, ω, and ρ are monotonous
decreasing in both formalisms. A dropping of 20% for the
isoscalar mesons, and of 42% for the ρ-meson is detected
in the DDHFT at n/n0 = 2. Our results provide for the
same conditions a stronger decay of 60% for the σ coupling
and of 40% in the remaining cases.

With the sets of parameters A and B we have evaluated
some properties of symmetric nuclear matter at zero tem-
perature. In fig. 3 we compare our results for the binding
energy and the pressure as functions of the baryon number
density, with those corresponding to the standard DSCM.
It can be seen that there are not appreciable differences
below n = 1.5n0, from here on both εB and P grow more
slowly in our calculations. The isothermal compressibility
is a measure of the stiffness of the pressure, we get at the
saturation density κT = 155 MeV, against κT = 220 MeV
for the DSCM. The lower slope of the binding energy in
our results is essentially due to the weakening of the repul-
sion at higher densities induced by the normalization fac-
tor N . On the other hand, the relative difference between
the mean values σ̄ and ω̄ increases with n in our model,
meanwhile in the standard DSCM it approaches to zero.
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Fig. 5. The full symmetry energy (left panel) and the interaction contribution Vs (right panel), in terms of the baryon number
density. In both cases solid lines correspond to results with coupling sets A and B. Dashed lines are used in the left panel for
the QHD model (with δ contribution), and the parameterizations P1, P2 and P3 as explained in the text. On the right panel
dashed lines correspond to the QHD model and to the parameterization given in ref. [30] for variational calculations (VC).

This gives rise to the relative lessening of the pressure at
high densities in our results.

The medium effects on the effective nucleon mass can
be seen in fig. 4, where a comparison with the DSCM re-
sult is made. In both cases M∗ is positive definite and
monotonous decreasing, but the rate of falling at densi-
ties 0 < n < 2n0 is more pronounced in our case because
of the higher value of gs needed to reproduce the normal
properties of nuclear matter. At higher baryonic densities
M∗ stabilizes, due to the dynamical screening of the ef-
fective coupling.

As the next step we investigate the density dependence
of the symmetry energy Es. It has been profusely studied
in the past, using non-relativistic potentials as well as rel-
ativistic formulations [29–35]. Recently Es has received
attention by its applications to the study of the structure
of nuclei with a large neutron excess, produced in the ra-
dioactive ion beam facilities. It is also a relevant subject
in the evolution of neutron stars, determining the compo-
sition of the ground state and the cooling mechanism [20],
or the phase transition to quark matter [30]. Furthermore,
it has been proposed that the ratio of neutrons to protons
in the pre-equilibrium stage of collisions between neutron-
rich nuclei could distinguish the asymmetric contribution
of the nuclear equation of state [31].

Different theoretical predictions for Es produce rather
dissimilar density dependences. In the left part of fig. 5 we
compare our results for the symmetry energy coefficient,
with and without the contribution of the a0-meson, with
other commonly used descriptions. We include the result
from the QHD model of ref. [29] including the nucleon-
a0-meson coupling, and other three cases labeled P1, P2,
and P3. The latter correspond to the phenomenological

parameterizations [21]:

Es =
3
5

(
22/3 − 1

)
eF

[
u2/3 − F (u)] + Es0F (u)

]
,

where u = n/n0, eF is the non-relativistic Fermi energy
at the saturation density, and the function F (u) takes the
forms F1(u) = 2u2/(1+u), F2(u) = u, and F3(u) =

√
u for

the curves denoted as P1, P2 and P3, respectively. All the
curves are almost coincident for densities n < 1.5n0, but
their mutual differences become significative for densities
above that limit. The exception corresponds to the cases
A and P3, which differ from each other only by negligible
amounts in all the range of shown densities. From eq. (19)
it can be seen that the contributions to Vs of the isovector
δ and ρ-mesons are opposite in sign. However choosing
gd �= 0 brings on an enhanced behaviour of Es, because
the value of gr required to adjust Es = 32 MeV at n = n0

is bigger than gd (see fig. 1). It must be noted that the rate
of growth of the cases A, B, and P3 decreases with density,
whereas it remains approximately constant for the curves
P1, P2 and slowly increases for the QHD case.

The effect of polynomial self-interactions of the σ field
in QHD models has been studied in [36]. Both, the inclu-
sion of exchange terms and of the δ coupling in Hartree
approximation enhance the density dependence of Es, and
therefore diverge from curves A and B in the left part of
fig. 5.

The behavior of Es depends on the method of evalua-
tion and the model of interaction used, the latter defines
the Vs term. On the right part of fig. 5 we display the
interaction contributions for Es obtained with the sets A
and B, and we compare them with Vs extracted from the
QHD model of [29] and with the parameterization given
by [30] for the variational calculations (VC) made in [37].
It can be seen that our results are intermediate between
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Fig. 6. The effective masses of proton and neutron as func-
tions of the relative baryon number density for asymmetric
nuclear matter at zero temperature. The solid (dashed) line
corresponds to results with the coupling set A (B).

QHD and the VC results. A characteristic behaviour of
the VC is that Vs becomes negative for densities greater
than certain typical value, causing the disappearance of
protons in neutron stars at high densities.

Curves QHD and B allow us to discern the effect of the
medium-dependent couplings on the symmetry potential
Vs. There are two sources of disagreement between both
curves; in first place the density dependence of the ef-
fective nucleon mass of the model of ref. [29] are below
the results of the modified ZM model. In second place,
the couplings gr and gd are held fixed in the QHD calcu-
lations, whereas they decrease with density in the other
case. Both effects induce coherently a faster increase of the
QHD curve. A gross numerical estimate of their influence
on the deviation shown for Vs at n = 4n0 assigns about
70% to the medium-dependent couplings and 30% to the
differences for the variation of the nucleon masses. From
the behavior of the symmetry terms shown in fig. 5, we
expect that the fraction of protons in star matter should
be lower in our results as compared, for instance, with
the QHD model prediction, although this fraction remains
non-vanishing for all densities in our case. The inclusion
of the δ coupling (curve B) slightly increases the presence
of protons.

4 The equation of state of asymmetric
nuclear matter

We study here the properties of nuclear matter at finite
temperature by taking the asymmetry coefficient χ as a
free parameter. In the next section the isospin asymmetry
will be determined by the conditions of electric charge
neutrality and matter stability against electroweak decay.

In first place we inspect the density dependence of the
nucleon effective mass for fixed χ. In fig. 6 we compare

Fig. 7. The pressure P in terms of the nucleon number density
at χ = 0.25. The different curves correspond to temperatures
T = 0, 20, 40, 60, 80, and 100 MeV. The arrow indicates the
sense of growing temperatures. The results shown are obtained
with the set A.

results with and without δ coupling at T = 0 and χ =
0.5. For gd = 0 (set A) proton and neutron masses are
degenerate, and for gd �= 0 (set B) the neutron (proton)
mass is lowered (enhanced) due to medium effects. The
splitting is heightened as the density increases.

Temperature effects are small in the range 0 < T <
100 MeV, and more noticeable at high densities. For ex-
ample, when the coupling set A is chosen, an increment
of about 5 MeV in the nucleon effective mass is observed
at n = 5n0 as the temperature is raised from T = 0 to
T = 100 MeV, at a given χ. Of the same magnitude but
opposite in sign is the effect of increasing the asymme-
try from χ = 0 to χ = 1 at a fixed temperature. When
the coupling set B is used, it is found that the in-medium
mass splitting ∆M∗ = M∗

p −M∗
n decreases when the tem-

perature is raised at fixed χ. On the other hand, ∆M∗ is
enhanced when the asymmetry is isothermally increased.
Numerical values of this mass splitting depend on the set
of couplings used, and we estimate the magnitude of both
temperature and asymmetry effects calculating ∆M∗ with
the set B at n = 5n0. In this case the splitting reduces
about 5 MeV in neutron matter when the temperature
covers the range 0 < T < 100 MeV, but an increment
of approximately 50 MeV is found in ∆M∗ if χ is varied
between χ = 0 and χ = 1 at fixed temperature.

The thermodynamical pressure P has been evaluated
using eq. (15), for several temperatures 0 < T < 100 MeV,
and several asymmetries 0 < χ < 1. The increase of the
temperature produces an enhancement of the pressure.
This effect is strengthened by raising the asymmetry. The
quantitative behavior of the pressure can be seen in figs. 7
and 8. In the first one we plot the pressure as a function of
the number density at fixed asymmetry χ = 0.25 and for
several temperatures. For T ≥ 20 MeV it is a monotonous
increasing function of the density, whereas for T = 0 it
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Fig. 8. The pressure as a function of the nucleon number density. Different types of lines correspond to the asymmetry
coefficients χ = 0, 0.25, 0.50, 0.75, and 1.0, respectively. The arrows indicate the direction of increasing χ. The top (bottom)
panel represents calculations for T = 0 (T = 100 MeV), and the left (right) side is devoted to results using the coupling set A
(B).

exhibits a region of instability for densities below n0. This
instability gives rise to a liquid-gas phase transition [10].
The results in fig. 7 correspond to the set A. By using the
set B qualitatively similar results are obtained.

The relevance of the asymmetry in our calculations can
be observed in fig. 8. The higher the values of the asymme-
try the stiffer the pressure raises, this effect is emphasized
when the coupling gd is non-zero. The liquid-gas instabil-
ity remains for low T and n, disappearing for χ close to 1.

5 Hadronic matter in β-equilibrium.

The conditions in the interior of certain stellar objects
like protoneutron stars, require additional degrees of free-
dom to be included in the Lagrangian density of sect. 2.
Due to the large densities reached in such systems, several
physical phenomena could take place. The appearance of
mesons and baryons with strangeness, pion and/or kaon
condensation, the chiral symmetry restoration, and the
phase transition to a quark-gluon plasma are some of the
expected processes. They must be taken into account, in
order to properly describe the high density behavior of the
equation of state. In this section we complete the model

proposed by including the hyperons Λ,Σ, and Ξ, but we
do not treat explicitly the chiral symmetry and quark de-
grees of freedom. Therefore our results should be valid un-
til fluctuations preceding any phase transition become rel-
evant. However we present here calculations in the range
0 < n/n0 < 10 for the sake of comparison.

As anticipated in sect. 2, the modifications in the La-
grangian density are straightforward since we retain the
form of the interaction for all the baryons. A sum over the
full octet N,Λ,Σ, and Ξ must be considered in eq. (1), and
new couplings gs, gd, gw, and gr are introduced for the hy-
perons. Furthermore, the vertex between the ρ-meson and
the baryon B must be modified by including an appropri-
ate coefficient: IB3 = 1/2 for proton and Ξ0, IB3 = −1/2
for neutron and Ξ−, IB3 = 1 for Σ+, IB3 = 0 for Λ and
Σ0, and IB3 = −1 for Σ−.

According to our phenomenological approach the new
couplings should be fixed to reproduce some relevant
quantity. We proceed in this way to determine the σ-
and ω-Λ couplings. Using hypernuclei data the Λ bind-
ing energy can be extrapolated to be εΛ = −28 MeV at
n0, thus we obtain gsΛ = 2.335, gwΛ = 2.099. For the
other hyperons there are not accurate experimental data.
Different arguments are commonly used to get numerical
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p

Fig. 9. The effective baryon masses in terms of the total baryon number density. The left (right) panel corresponds to calculations
with set A (B). Different type of lines are assigned to each isomultiplet, as indicated in both panels.

values, like SU(6) symmetry or vector meson dominance.
For simplicity and to carry out computations, we adopt
gs,w Σ = gs,w Ξ = gs,w Λ and gr,d Σ = gr,d Ξ = gr,d Λ = gr,d,
without any further justification. With this choice we ob-
tain very similar binding energies at n0 : εΣ = −28.11
MeV, and εΞ = −28.27 MeV for the Σ and Ξ hyperons.

Neutron star matter is electrically neutral and ad-
ditional contributions coming from electrons and muons
must be included. Leptons are treated as Dirac free par-
ticles. The equilibrium for β-decay imposes constraints
among the baryon and lepton chemical potentials: µB =
µn − qBµe. Here we have used qB for the baryon electric
charge in units of the positron charge, µn, µe, and µB rep-
resents the chemical potentials for neutron, electron and
the baryon B, respectively. On the other hand, the elec-
tric charge neutrality imposes 0 = −∑

l nl +
∑

B qBnB,
with nl and nB indicating the number density for leptons
and baryons. At zero temperature we consider the Fermi
momentum pF, writing: ni = p3

F i/(3π2), µl =
√

p2
F l + m2

l

for leptons, and µB =
√

p2
F B + M∗2

B + g∗w Bω̄ + g∗rIB3ρ̄ for
baryons. The efective mass M∗

B is a generalization of eq.
(10), M∗

B = (MB − IBgdδ̄)/NB with IB = 1 for p,Σ+, and
Ξ0, IB = 0 for Λ and Σ0, and IB = −1 for n,Σ−, and
Ξ−. We have used NB = 1 + gsBσ̄/MB, where MB is the
averaged mass of the baryon isomultiplet B.

The effective baryon masses as functions of the bary-
onic number density are shown in fig. 9. In the results cor-
responding to set A, each isomultiplet remains degenerate
in mass. The variation of the hyperon masses are much
more moderate than for the nucleon masses. As a con-
sequence of the specific interaction used, the heavier the
baryon considered, the weaker the density dependence of
its effective mass is. Using the coupling set B the isospin
degeneracy is removed, enhancing or dropping the mass
of particles with positive or negative isospin projection,
respectively, as it is depicted on the right part of fig. 9.

In fig. 10 the relative population of the baryonic species
is shown in terms of the total particle number, at T = 0.
In the range of densities studied the full baryon octet is
present, with exception of the Ξ0 when the coupling set B
is used. The results obtained with gd = 0 and gd = 6.538
are very similar for the leptons and the lightest baryons (p,
n, and Λ). Differences between them become noticeable
in the growth of populations of the heavier fermions Σ
and Ξ. The more obvious is the early appearance, at n �
3.3n0, and predominance of Σ− particles in the results
with the coupling set A.

The equilibrium baryonic population is not perturbed
by the presence of the δ-meson (set B) at low and medium
densities. The effect of turning on the δ interaction, is
twofold and is emphasized at high densities. In first place
the baryon-δ interaction enhances the effective mass of Ξ0

and diminishes that of Σ− and Ξ−, increasing and lower-
ing the corresponding thresholds. The more evident con-
sequence of this is the absence of Ξ0 particles in the range
0 < n/n0 < 10 (right panel of fig. 10). In second place the
coupling gr grows with gd, affecting more strongly to the
isotriplet Σ than the isoduplet Ξ, due to the factor IB3.
Since the ρ-meson contribution to the chemical potential
is positive and greater for Σ− than for Ξ−, this causes
the appearance of Σ− and of Ξ− to be delayed and antic-
ipated, respectively, going from the left to the right panel
of fig. 10. The Λ and Σ0 baryons, which do not couple
to the isovector mesons, do not show appreciable changes
in their distributions. On the other hand, from the com-
paratively earlier raising of the Σ+ and Ξ− population
obtained with set B, it is possible to infer that, in abso-
lute values, the δ contribution to the baryonic chemical
potentials lies between one-half and the total ρ contribu-
tion. Of course, these results are partially a consequence
of our assumption of equal couplings gd and gr for all the
hyperons considered.
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Fig. 10. The fraction of leptons and baryon species present in hadronic matter in β-equilibrium at T = 0. The different curves
are labeled with the corresponding particle name. The left (right) panel corresponds to calculations with the coupling set A
(B).

A

B

Fig. 11. The pressure of hadronic matter in β-equilibrium at
T = 0. As indicated in the figure, solid (dashed) line corre-
sponds to calculations using the coupling set A (B).

The pressure in terms of the baryon number density is
exhibited in fig. 11. There are abrupt changes of slope in
the curve corresponding to the set A, which coincide with
the appearance of hyperons. Similar changes, but more
attenuated, take place in the curve with the set B.

6 Meson propagation in asymmetric nuclear
matter

Medium effects in the meson properties have received at-
tention in the later years, as they could carry the signals

Fig. 12. Feynman diagrams included in the RRPA. Case a (b)
corresponds to pure (mixing) meson propagation. The solid line
stands for baryon propagator, dashed and dotted lines repre-
sent meson propagators of different types, and the filled circle
and the cross their respective vertices.

of phase transitions in the hadronic environment. As pre-
viously stressed, we expect that our results be valid out
of the vicinity of the transition point.

In the MFA mesons are treated as classical fields, with
constant mass. In order to include quantum corrections
we must go beyond the MFA. This can be done in the rel-
ativistic random phase approximation (RRPA), using the
linearized residual interaction of eq. (13). In this approach
the meson propagators are corrected by incorporating the
baryon bubble diagrams at all orders, by using the Dyson-
Schwinger equation. From the corrected propagator the ef-
fective meson mass can be extracted. This procedure has
been applied in QHD calculations, see for example [10]
and references listed therein. Specific computations with
the DSCM can be found in [14,15].

The one-loop proper polarization insertions comprise
the diagrams shown in fig. 12. Case (a) represent the prop-
agation of a pure meson field, and case (b) the mixing am-
plitude of different mesonic types. Due to baryon current
conservation, the proper polarization for all the mesons
can be written in terms of a few components. Some of
them are divergent and requires an appropriate regular-
ization. For this purpose, we follow the scheme outlined
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in [15]. We do not deduce those results here, but we re-
produce the main equations for the sake of completeness.

The formalism is best described within a generalized
meson propagator, in a matrix representation of dimension
equal to the sum of the mesonic degrees of freedom. For
example the generalized free meson propagator P0, has
in its diagonal blocks the free meson propagators S0(q),
D0 AB(q), W 0

µν(q), and R0 AB
µν (q), for the σ(x), δ(x), ω(x),

and ρ(x) fields, respectively, and null matrices in the com-
plementary spaces:

P0
αβ(q) =




S0(q)
:
:

.......... .........
:
: D0(q)

:
:

.......... .........
:
: W 0(q)

:
:

........... .........
:
: R0(q)




αβ

.

A similar expression holds for the full generalized prop-
agator P, but the complementary spaces are filled with the
mixing meson propagators:

Pαβ(q) =




S(q) Mσδ(q) Mσω(q) Mσρ(q)
Mδσ(q) D(q) Mδω(q) Mδρ(q)
Mωσ(q) Mωδ(q) W (q) Mωρ(q)
Mρσ(q) Mρδ(q) Mρω(q) R(q)




αβ

.

The Dyson-Schwinger equation can be used to solve
for P−1(q):

P−1
αβ (q) = P0−1

αβ (q) − Παβ(q),

where we have introduced the generalized polarization in-
sertion

Παβ(q) =




Πs(q) Πσδ(q) Πσω(q) Πσρ(q)
Πδσ(q) Πd(q) Πδω(q) Πδρ(q)
Πωσ(q) Πωδ(q) Πw(q) Πωρ(q)
Πρσ(q) Πρδ(q) Πρω(q) Πr(q)




αβ

. (20)

Since we are primarily interested in the propagation of
the pure meson fields, we neglect mixing polarizations as
a first approach. The formulae for the one-loop diagonal
components are as follows:

iΠs(q) =
∑
B

g∗ 2
sB

∫
d4p

(2π)4

{
Tr [GB(q)GB(q + p)]

+
∑

λ

2φ̄λ

MB
Tr [GB(q)ΓλGB(q + p)]

+
∑
λ,λ′

φ̄λφ̄λ′Tr [GB(q)ΓλGB(q + p)Γλ′ ] /M2
B

}
,

iΠAC
d (q) = g∗ 2

d

∑
B

∫
d4p

(2π)4
Tr

[
GB(q)TAGB(q + p)TC

]
,

iΠµν
w (q) =

∑
B

g∗ 2
wB

∫
d4p

(2π)4
Tr [GB(q)γµGB(q + p)γν ] ,

iΠAC
r µν(q) = g∗ 2

r

∑
B

∫
d4p

(2π)4

×Tr
[
GB(q)γµTAGB(q + p)γνTC

]
,

where the index B runs over all the baryons considered,
and λ, λ′ in the first equation runs over the meson fields
δ, ω, and ρ. The vertices Γλ have been generalized to hy-
perons, i.e. Γλ = −gdIB, gwBγ, grIB3γ, respectively. The
baryon propagators GB(q) are evaluated in the MFA.
In our calculations we only need the transversal compo-
nent in the Lorentz indices, and the third component of
isospin. For this purpose we use T 3 = τ3/2 for the nu-
cleon and Ξ, T 3 = 0 for the Λ, and T 3 =diag(1, 0,−1) for
the Σ-particle. The referred expressions contain particle-
antiparticle, particle-hole, and Pauli blocking contribu-
tions. The first one is divergent, and to extract finite
contributions we apply the regularization scheme outlined
in [15]. The Lorentz scalar contributions, containing the
integrand Tr [GB(q)GB(q + p)], remains undefined by a
constant λ, related to the covariant derivative of the po-
larization evaluated at the regularization point. We take
this constant as a free parameter to analyze the possible
dynamical regimes. There are two independent parame-
ters λs and λd corresponding to the diagonal components
Πs and Πd, respectively. We require null contribution for
the polarization evaluated on the meson mass shell, at
zero baryon density and temperature. Thus we obtain for
the finite particle-antiparticle contribution of the baryon-
B bubble:

Π ′ 00
vB (q) =

g∗ 2
vB

2π2
q2

∫ 1

0

dz z(1 − z) ln
[
M∗2

B − z(1−z)q2

M2
B − z(1−z)m2

v

]
,

Π ′ 33
vB (q) =

q2

q2
Π ′ 00

vB (q),

Π ′
cB(q) = λc

g∗2cB

8π2
(m∗2

B m2
c − q2) − 3g∗2cB

4π2

×
∫ 1

0

dz [M∗2
B − z(1 − z)q2]

× ln
[
M∗2

B − z(1 − z)q2

M2
B − z(1 − z)m2

c

]
, (21)

where the index v = w, r runs over the vector mesons,
and c = s, d runs over the scalar ones. In the case of isovec-
tor polarizations, it must be regarded as the (3,3) isospin
component. Furthermore we have used q2 = qµqµ, q is the
modulus of the spatial component of the momentum, and
m∗

B = M∗
B/MB.

Once the polarization has been properly defined, we
introduce the effective meson masses m∗

s,m
∗
d,m

∗
w, and m∗

r .
They have been defined as the zeroes of the corresponding
inverse propagators at zero vector momentum, i.e. the p0
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Fig. 13. The effective σ-meson mass as a function of the baryonic density at T = 0. In the left (right) panel the results for
the regularization parameter λs = 10 (λs = 100) are plotted. In each case the solid line corresponds to hadronic matter in
β-equilibrium, and the dashed lines to nuclear matter with asymmetry coefficients χ = 0, 0.25, 0.50, 0.75, and 1. The arrow
indicates the direction of growing χ in the last case.

solutions of:

P−1
aa (p0, p = 0) =

P0−1
aa (p0, p = 0) − Πaa(p0, p = 0) = 0, (22)

for a = s, d, w, and r.
In figs. 13-15 we show the numerical results for the

density dependence of the meson masses at T = 0, under
different compositions of the hadronic medium. In fig. 13
the behavior of the σ-meson mass is presented. The results
correspond to the coupling set A, there are no appreciable
differences with respect to the calculations using set B.

It can be seen that in β-stable hadronic matter the
mass is almost constant at high densities. In the case of
nuclear matter at constant asymmetry the density depen-
dence is more pronounced, and monotonously decreasing.
The asymmetry dependence is small, as this figure shows.

Figure 14 is devoted to the a0-meson mass. The curves
for matter in β-equilibrium are qualitatively similar to
those corresponding to the σ-meson. In asymmetric nu-
clear matter its behavior is much more striking. For
λd = 10 the mass becomes zero at n/n0 � 4, whereas
for λd = 100 it decreases sharply but never vanishes in
the whole range considered.

The differences shown in figs. 13 and 14, between the
choices λ = 10 and λ = 100, indicate the ambiguity of the
regularization procedure. We have selected these values
only as representatives of the qualitatively diverse behav-
iors that can be obtained for the effective meson masses.

The masses for the vector mesons are shown in fig. 15.
For the ω-meson the behavior is almost independent of the
composition of the hadronic environment, sensible depar-
tures are observed only for extreme densities. This is not
the case of the ρ-meson mass, a clear difference among β-
stable matter and asymmetric nuclear matter is observed,
even at low densities.

Since Πaa(p) receives the contribution of all the bary-
onic species considered, the mesonic effective masses are
strongly influenced by the inclusion of hyperons, even at
densities close to the normal saturation value. It must
be noted that the particle-antiparticle term coming from
the baryon-B bubble contributes even when this particle
is not present on its Fermi shell. The hyperon particle-
antiparticle contributions at medium and high densities
produce the stabilization of the mesonic masses in neutral
β-stable matter. This can be appreciated in figs. 13-15
where they exhibit a weaker density dependence as com-
pared to nuclear matter results. The magnitude of this
effect is distinct for each type of meson, depending on the
strength of its coupling to the hyperons.

The relative smallness of the in-vacuum hyperon-
meson couplings as compared with the nucleon-meson
ones, is the cause of the similitude of the isoscalar me-
son masses behavior (m∗

s/ms and m∗
w/mw) at very low

densities, in both the asymmetric nuclear matter (ANM)
and the neutral hypermatter (NHM) situations. This is
not true for the isovector mesons (m∗

d/md and m∗
r/mr),

whose respective couplings gd, gr are the same for all the
baryons.

There is an increasing departure of the meson mass be-
havior in the respective ANM and NHM examples, as the
density grows. It is due to the faster decrease of the effec-
tive nucleon couplings on the one side, together with the
greater multiplicity of hyperons on the other. Therefore,
the hyperon vacuum contributions become more and more
relevant for higher densities. Since nucleon and hyperon
vacuum polarizations have opposite signs in the Lorentz
scalar channel, m∗

s and m∗
d drop more slowly in NHM,

as compared with the ANM case. In the Lorentz vector
channel nucleon and hyperon vacuum polarizations add
coherently, instead. Thus the decreasing behavior shown
for m∗

w and m∗
r in ANM is accentuated in the NHM case.
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Fig. 14. The effective a0-meson mass as a function of the density at T = 0. The left (right) panel corresponds to the values
λd = 10 (λd = 100). Solid line stands for β-stable hadronic matter, and dashed lines correspond to asymmetric nuclear matter
with asymmetry χ = 0.25, 0.50, 0.75, and 1. The arrows indicate the direction of growing χ.

Fig. 15. The density dependence of the vector mesons. The left panel corresponds to the isoscalar ω-meson, the right panel
to the isovector ρ-meson. In both cases the bold (thin) solid line corresponds to β-stable matter with coupling set B (A), and
dashed (dotted) lines correspond to asymmetric nuclear matter with χ = 0, 0.25, 0.50, 0.75, and 1 using the set B (A). The
arrow indicates the direction of growing χ.

Comparison with other theoretical predictions is diffi-
cult, since as far as we know meson propagation in isospin
asymmetric matter has been poorly studied in the past.
We can mention, for instance, the work of ref. [38], where
vector meson masses were investigated by including a
nucleon-meson tensorial coupling. The Dirac sea contribu-
tions to the meson polarizations are also included. As in
our results vector meson masses decrease when the asym-
metry increases. At n = 3n0 they found a relative change
of 6% (17%) in mw (mr) when passing from symmetric
nuclear matter to pure neutron matter. Instead, we find
here a drop of about 2% (6%) for mw (mr) at the same
conditions. Contrary to our findings, in ref. [38] a fast

monotonous decrease of both mw and mr is obtained in
the range 0 < n/n0 < 2.5

Meson properties in symmetric nuclear matter were in-
vestigated within the QHD-I model, for example in [39].
This calculation show a monotonous increase of ms in
the range n ≥ n0. The disagreement with the qualita-
tive behavior shown in fig. 13 can be assigned mainly to
the different schemes of regularization used, and to the
strong decrease of the effective coupling g∗s in the modi-
fied DSCM. Instead, the behavior of m∗

w is more alike to
ours, since both sources of discrepancy are moderated in
the vector channel.
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A comparison with the DSCM calculations of [15]
shows that the main effect of generalizing the non-linear
σ interaction to the vector meson couplings is noteworthy
for the effective σ- and ω-meson masses. Their density
dependence is more abrupt in the present work, and gen-
erally speaking the values obtained here are lower than in
ref. [15].

As mentioned before, the results given here are ob-
tained by neglecting the contribution of mixing in the me-
son polarization. The influence of such effects was previ-
ously studied in a variety of works, see for example [38,40,
41]. There, sizeable contributions were found. In order to
test our assumptions, we have evaluated the mixing com-
ponents of eq. (20) at the points q0 = m∗

a, q = 0, where
a = s, w. We have found that only Πσδ and Πωρ give non-
zero contributions in such conditions. These contributions
remain relatively small for the σ-δ mixing, due to the big
difference between their respective masses. On the oppo-
site, our estimates of ω-ρ mixing give significative values in
the whole range of densities considered, although it tends
to diminish at high densities. This result does not sup-
port the assumptions made, and further investigation is
needed to determine how much the distribution of zeroes
of eq. (22) is modified by the inclusion of mixing terms.
Such calculations are out of the scope of the present work,
and therefore the results shown in sect. 6 must be taken
as a first approach to the full problem.

7 Discussion and summary

In this paper we have proposed an effective relativis-
tic hadronic model inspired in the DSCM to investigate
in-medium hadronic properties, in terms of the baryon
isospin asymmetry. The non-linear σ-nucleon interaction
is generalized to the isoscalar vector, isovector scalar, and
isovector vector channels. Effective medium-dependent
couplings arise at the MFA, and a residual interaction
with one and two-meson exchange is obtained beyond the
MFA. The equation of state (EoS) for symmetric nuclear
matter is softer than the one corresponding to the DSCM.
The symmetry energy coefficient shows an intermediate
behavior between the QHD model and non-relativistic
variational calculations. The asymmetry dependence of
the EoS becomes relevant for densities n ≥ 3n0, and it
is emphasized by the contribution of the a0(980)-meson
exchange. Temperature effects in the range 0 < T < 100
MeV are noticeable in the EoS, but moderate in the ef-
fective baryon masses. As a particular manifestation of
asymmetric matter we study hadronic matter with hyper-
ons, in equilibrium against electroweak decay at T = 0.
The δ coupling is the cause of notable modifications in
the population of hyperons at high densities. Due to the
lower hyperon-meson couplings, relative to the nucleon-
meson ones, the hyperonic effective masses decrease more
moderately as the baryon density increases.

The effective meson masses have been evaluated at
T = 0 in the RRPA, including particle-antiparticle finite
contributions. The regularization procedure left undefined
parameters λs and λd. We have selected numerical values

for them, which differ by one order of magnitude, and are
representative of the possible dynamical regimes. In asym-
metric nuclear matter the scalar σ- and δ-mesons exhibit
monotonous decreasing masses for high densities, whereas
the vector ω- and ρ-meson masses show a slight increase
for n/n0 > 1. In all cases the effective masses remain below
its vacuum values at extreme densities. The dependence
on the asymmetry χ is more evident for the vector mesons.
In β-stable hadronic matter the density variation of the
effective masses of all the mesons considered is damped,
becoming approximately constants at twice the satura-
tion density. This effect is due to the particle-antiparticle
terms, contributing even for particles out of their Fermi
shell.

Since our calculations do not include mixing effects,
additional investigation is required to properly include σ-
δ and ω-ρ polarization in the determination of the effective
meson masses in the modified DSCM.

This work was partially supported by the CONICET, Ar-
gentina.
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